Abstract : The treatment of skeletal Class III malocclusion in adolescents is challenging. Maxillary protraction, particularly that using bone anchorage, has been proven to be an effective method for the stimulation of maxillary growth. However, the conventional procedure, which involves the surgical implantation of mini-plates, is traumatic and associated with a high risk. Three-dimensional (3D) digital technology offers the possibility of individualized treatment. Customized miniplates can be designed according to the shape of the maxillary surface and the positions of the roots on cone-beam computed tomography scans; this reduces both the surgical risk and patient trauma. Here we report a case involving a 12-year-old adolescent girl with skeletal Class III malocclusion and midface deficiency that was treated in two phases. In phase 1, rapid maxillary expansion and protraction were performed using 3D-printed mini-plates for anchorage. The mini-plates exhibited better adaptation to the bone contour, and titanium screw implantation was safer because of the customized design. The orthopedic force applied to each mini-plate was approximately 400?500 g, and the plates remained stable during the maxillary protraction process, which exhibited efficacious orthopedic effects and significantly improved the facial profile and esthetics. In phase 2, fixed appliances were used for alignment and leveling of the maxillary and mandibular dentitions. The complete two-phase treatment lasted for 24 months. After 48 months of retention, the treatment outcomes remained stable.
Abstract : Orthodontic treatment of posterior bite collapse due to early loss of molars and the consequent drift of adjacent teeth is complicated. When the posterior bite collapse occurs in patients with facial asymmetry, both transverse and vertical compensation are necessary for camouflage orthodontic treatment. In such cases, posterior maxillary segmental osteotomy (PMSO) can be an effective alternative procedure that simplifies the orthodontic treatment and shows long-term stability through dental compensation within the alveolar bone housing. This case report aimed to describe the orthodontic treatment of maxillary occlusal plane canting caused by severely extruded maxillary teeth in a patient with skeletal facial asymmetry that was corrected with PMSO along with protraction of the lower second molar to replace the space of the extracted first molar. The treatment duration was 18 months, and stable results were obtained after 2 years of retention.
Abstract : Forces and moments delivered by a straight wire connecting two orthodontic brackets are statically indeterminate and cannot be estimated using the classical equations of static equilibrium. To identify the mechanics of such two-bracket systems, Burstone and Koenig used the principles of linear beam theory to estimate the resulting force systems. In the original publication, however, it remains unclear how the force systems were calculated because no reference or computational details on the underlying principles have been provided. Using the moment carry-over principle and the relative angulation of the brackets, a formula was derived to calculate the relative moments of the two brackets. Because of the moment equilibrium, the vertical forces that exist as a forcecouple on the two brackets can also be calculated. The accuracy of the proposed approach can be validated using previously published empirical data.
Abstract : Objective: To evaluate the construction reproducibility of a composite tooth model (CTM) composed of an intraoral-scanned crown and a cone-beam computed tomography (CBCT)-scanned root. Methods: The study assessed 240 teeth (30 central incisors, 30 canines, 30 second premolars, and 30 first molars in the maxillary and mandibular arches) from 15 young adult patients whose pre-treatment intraoral scan and CBCT were available. Examiner-Reference (3 years’ experience in CTM construction) and Examiners-A and Examiner-B (no experience) constructed the individual CTMs independently by performing the following steps: image acquisition and processing into a three-dimensional model, integration of intraoral-scanned crowns and CBCT-scanned teeth, and replacement of the CBCT-scanned crown with the intraoral-scanned crown. The tooth axis angle in terms of mesiodistal angulation and buccolingual inclination of the CTMs constructed by the three examiners were measured. To assess the construction reproducibility of CTMs, intraclass correlation coefficient (ICC) assessments were performed. Results: The ICC values of mesiodistal angulation and buccolingual inclination among the 3 examiners showed excellent agreement (0.950?0.992 and 0.965?0.993; 0.976?0.994 and 0.973?0.995 in the maxillary and mandibular arches, respectively). Conclusions: The CTM showed excellent construction reproducibility in mesiodistal angulation and buccolingual inclination regardless of the construction skill and experience levels of the examiners.
Marcio Antonio de Figueiredo , F?bio Louren?o Romano, Murilo Fernando Neuppmann Feres, Maria Bernadete Sasso Stuani, Ana Carla Raphaelli Nah?s-Scocate , M?rian Aiko Nakane Matsumoto
Abstract : In this report, we demonstrate the effectiveness of the Invisalign? system in the treatment of severe gingival recession and bone dehiscence through torque, translation, and intrusion movements in a young woman. Cone-beam computed tomography was used to assess bone parameters and check the teeth during treatment. The root of the mandibular right central incisor, which was buccally positioned and exhibited bone dehiscence of 9.4 mm, was moved toward the center of the alveolar process by using the Invisalign? system and SmartForce? features. The patient was monitored by a periodontist throughout the orthodontic treatment period. Her gingival recession reduced, while the bone dehiscence reduced from 9.40 mm to 3.14 mm. Thus, movement of the root into the alveolus promoted bone neoformation and treated the gingival recession. The findings from this case suggest that orthodontic treatment using the Invisalign? system, along with periodontal monitoring, can aid in the treatment of gingival recession and alveolar defects.
Abstract : Objective: To evaluate the changes in the nose in three dimensions after Le Fort I osteotomy in patients with skeletal Class III malocclusion. Methods: The subjects were 40 adult patients (20 females and 20 males; mean age, 20.3 ± 3.0 years; range, 17.0 to 31.1 years) who underwent one-piece Le Fort I osteotomy with maxillary advancement and impaction treatment for maxillary hypoplasia. The mean maxillary advancement was 4.56 ± 1.34 mm, and the mean maxillary impaction was 2.03 ± 1.04 mm. Stereophotogrammetry was used to acquire three-dimensional images before and at least 6 months after surgery. Results: Alare (Al) and alare curvature (Ac) points had moved vertically and anterolaterally postoperatively. A significant increase was observed in the nasal ala width and alar base width, and no changes were noted in the columellar length, nasolabial angle, and nasal area. There was a significant relationship between maxillary impaction and nasal ala width and horizontal and sagittal positions of the bilateral Al and Ac. The only relationship found was between maxillary advancement and postoperative sagittal location of the subnasale and pronasale. Conclusions: Nasal soft tissues were highly affected by the vertical movement of the maxilla; however, the soft tissue responses were individual-dependent.
Abstract : Objective: To compare computer-aided design and computer-aided manufacturing (CAD/CAM) customized nitinol retainers with standard stainlesssteel fixed retainers over a 12-month study period. Methods: This randomized controlled trial (RCT) was conducted on 62 patients randomly allocated to a control group that received stainless-steel retainers or a test group that received customized CAD/CAM nickel-titanium retainers. Four time points were defined: retainer placement (T0) and 1-month (T1), 6-month (T2), and 12-month (T3) follow-up appointments. At each time point, Little’s irregularity index (LII) (primary endpoint) and dental stability measurements such as intercanine width were recorded in addition to assessment of periodontal parameters. Radiological measurements such as the incisor mandibular plane angle (IMPA) were recorded at T0 and T3. Failure events (wire integrity or debonding) were assessed at each time point. Results: From T0 to T3, LII and other dental measurements showed no significant differences between the two groups. The data for periodontal parameters remained stable over the study period, except for the gingival index, which was slightly, but significantly, higher in the test group at T3 (p = 0.039). The IMPA angle showed no intergroup difference. The two groups showed no significant difference in debonding events. Conclusions: This RCT conducted over a 12-month period demonstrated no significant difference between customized CAD/CAM nickel-titanium lingual retainers and standard stainlesssteel lingual retainers in terms of dental anterior stability and retainer survival. Both retainers eventually appeared to be equally effective in maintaining periodontal health.