Abstract : Enamel demineralization represents the most prevalent complication arising from fixed orthodontic treatment. Its main etiology is the development of cariogenic biofilms formed around orthodontic appliances. Ordinarily, oral biofilms exist in a dynamic equilibrium with the host's defense mechanisms. However, the equilibrium can be disrupted by environmental changes, such as the introduction of a fixed orthodontic appliance, resulting in a shift in the biofilm’s microbial composition from non-pathogenic to pathogenic. This alteration leads to an increased prevalence of cariogenic bacteria, notably mutans streptococci, within the biofilm. This article examines the relationships between oral biofilms and orthodontic appliances, with a particular focus on strategies for effectively managing oral biofilms to mitigate enamel demineralization around orthodontic appliances.
Abstract : Objective: To evaluate the effect of clear aligner treatment and differential sequence distalization of maxillary posterior teeth on anchorage loss in the upper incisors (U1s). Methods: This study used lateral cephalometries and digital models of 12 patients treated with 33% sequential distalization (group 1, mean age: 22.9 ± 0.7 years, five males, seven females) and 12 treated with 50% sequential distalization (group 2, mean age: 25.83 ± 0.5 years, three males, nine females) acquired before and after distalization of upper second premolars (U5) and upper first molars (U6) and upper second molars (U7). The amount of distalization was determined as 2.5 mm in both the groups. Independent Samples t test was used to compare normally distributed parameters. Mann–Whitney U and Wilcoxon tests were used to compare parameters that were not normally distributed. Results: In both groups, the posterior teeth significantly moved by tipping distally and the U1s were displaced anteriorly. Increase in maxillary posterior transverse width (P < 0.001) and distopalatal rotation were observed in U5, U6, and U7 after distalization. It was also observed that U1 was significantly more proclined (1.82°; P < 0.001) and protruded (0.62 mm; P < 0.001), and the overjet (0.45 mm; P < 0.001) increased more in group 1 than in group 2. Conclusions: After sequential distalization of maxillary posterior teeth, more anchorage loss was observed in the anterior region in group 1 than in group 2.
Abstract : Objective: To investigate the effects of maxillary orthodontic expansion on the alveolar bone tissue in adult patients treated with aligners by using cone-beam computed tomography. Methods: Thirty patients (22 females and 8 males; mean age: 36.3 years) were treated with Invisalign® aligners. Cone-beam computed tomography and digital models were obtained before (T0) and after (T1) upper arch expansion. The bone thicknesses in the cervical, middle, and apical areas of the incisors, canines, premolar, and first molars were buccally and palatally measured, totaling 96 areas and 2,880 measurements. The buccolingual inclinations and transverse measurements of the teeth were obtained from digital models to correlate them with the bone changes. The statistical tests used were Student’s t-test, analysis of variance, and Pearson’s correlation tests (p < 0.05). Results: From the 96 areas evaluated, 84 revealed an increase or stability in the alveolar bone thickness and twelve displayed significant bone loss. Bone changes did not correlate with the tooth inclination and transverse measurements. Conclusions: Within the limitation of the present study, mild levels of upper arch expansion obtained with Invisalign® aligners in adult patients did not result in any clinically significant loss of alveolar bone thickness.
Abstract : Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 μm. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 μm or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.
Abstract : Objective: To evaluate the null hypothesis that there is no difference in a set of clinical predictors of potentially impacted canines between low-risk patients with and without displaced canines. Methods: The normal canine position group consisted of 30 patients with 60 normally erupting canines ranked in sector I (age, 9.30 ± 0.94 years). The displaced canine group comprised 30 patients with 41 potentially impacted canines ranked in sectors II to IV (age, 9.46 ± 0.78 years). Maxillary lateral incisor crown angulation, inclination, rotation, width, height, and shape, as well as palatal depth, arch length, width, and perimeter composed a set of clinical predictors, which were evaluated on digital dental casts. Statistical analyses consisted of group comparisons and variable correlations (p < 0.05). Results: There was a significant association between sex and mesially displaced canines. Unilateral canine displacement was more prevalent than bilateral displacement. The crown of the maxillary lateral incisors was significantly angulated more mesially and rotated mesiolabially in low-risk patients with displaced canines, who also had a shallower palate and shorter anterior dental arch length. Lateral incisor crown angulation and rotation, as well as palatal depth and arch length, were significantly correlated with the canine displacement severity. Conclusions: The null hypothesis was rejected. Maxillary lateral incisor angulation inconsistent with the “ugly duckling” stage as well as a shallow palate and short arch length are clinical predictors that can significantly contribute to the early screening of ectopic canines in low-risk patients.
Abstract : Objective: This study aimed to compare the mechanical and thermal properties in the anterior and posterior segments of new and retrieved specimens of a commercially available multizone superelastic nickel-titanium (NiTi) archwire. Methods: The following groups of 0.016 × 0.022-inch Bioforce NiTi archwires were compared: a) anterior and b) posterior segments of new specimens and c) anterior and d) posterior segments of retrieved specimens. Six specimens were evaluated in each group, by three-point bending and bend and free recovery tests. Bending moduli (Eb) were calculated. Furthermore, the new specimens were evaluated with scanning electron microscopy/energy-dispersive X-ray spectrometry. A multiple linear regression model with a random intercept at the wire level was applied for data analysis. Results: The forces in the posterior segments or new specimens were higher than those recorded in the anterior segments or retrieved specimens, respectively. Accordingly, Eb also varied. Higher austenite start and austenite finish (Af) temperatures were recorded in the anterior segments. No statistically significant differences were found for these temperatures between retrieved and new wires. The mean elemental composition was (weight percentage): Ni, 52.6 ± 0.5; Ti, 47.4 ± 0.5. Conclusions: The existence of multiple force zones was confirmed in new and retrieved Bioforce archwires. The retrieved archwires demonstrated lower forces during the initial stages of deactivation in three-point bending tests, compared with new specimens. The Af temperature of these archwires may lie higher than the regular intraoral temperature. Even at 2 mm deflections, the forces recorded from these archwires may lie beyond biologically safe limits.
Abstract : Objective: To investigate sex-specific correlations between the dimensions of permanent canines and the anterior Bolton ratio and to construct a statistical model capable of identifying the sex of an unknown subject. Methods: Odontometric data were collected from 121 plaster study models derived from Caucasian orthodontic patients aged 12–17 years at the pretreatment stage by measuring the dimensions of the permanent canines and Bolton's anterior ratio. Sixteen variables were collected for each subject: 12 dimensions of the permanent canines, sex, age, anterior Bolton ratio, and Angle’s classification. Data were analyzed using inferential statistics, principal component analysis, and artificial neural network modeling. Results: Sex-specific differences were identified in all odontometric variables, and an artificial neural network model was prepared that used odontometric variables for predicting the sex of the participants with an accuracy of > 80%. This model can be applied for forensic purposes, and its accuracy can be further improved by adding data collected from new subjects or adding new variables for existing subjects. The improvement in the accuracy of the model was demonstrated by an increase in the percentage of accurate predictions from 72.0–78.1% to 77.8–85.7% after the anterior Bolton ratio and age were added. Conclusions: The described artificial neural network model combines forensic dentistry and orthodontics to improve subject recognition by expanding the initial space of odontometric variables and adding orthodontic parameters.
Abstract : Objective: Understanding the orofacial characteristics and growth patterns in children is essential for both orthodontics and research on children with orofacial abnormalities. However, a concise resource of normative data on the size and relative position of these structures in different populations is not available. Our objective was to aggregate normative data to assess the growth of the orofacial skeletal structures in children with a well-balanced face and normal occlusion. Methods: The MEDLINE, Embase, and Scopus databases were searched. Inclusion criteria included longitudinal and cross-sectional studies on cephalometric measurement of skeletal tissues and a study population ≤ 18 years with a well-balanced face and normal occlusion. Key study parameters were extracted, and knowledge was synthesized. A quality appraisal was performed using a 10-point scale. Results: The final selection comprised of 12 longitudinal and 33 cross-sectional studies, the quality of which ranged from good to excellent. Our results showed that from childhood to adulthood, the length of the cranial base increased significantly while the cranial base angle remained constant; both the maxilla and mandible moved forward and downward. The profile becomes straighter with age. Conclusions: Growth patterns in children with a well-balanced face and normal occlusion follow accepted theories of growth.
Abstract : Objective: To compare the effectiveness of laser-engineered copper-nickel titanium (SmartArch) and superelastic nickel-titanium (SENT) archwires in aligning teeth and inducing root resorption and pain experienced by patients. Methods: Two-arm parallel groups with a 1:1 allocation ratio were used. The participants were patients aged 11.5 years and older with 5–9 mm of mandibular anterior crowding who were indicated for non-extraction treatment. The primary outcome was alignment effectiveness, assessed using Little’s irregularity index (LII) over 16 weeks with a single wire (0.016-inch) in the SmartArch group and 2 wires (0.014- and 0.018-inch) in the SENT group (8 weeks each). Secondary outcomes included root resorption evaluated by pre- and post-intervention periapical radiographs and pain levels recorded by the participants during the first week. Results: A total of 40 participants were randomly allocated into 2 groups; 33 completed the study and were analyzed (16 in the SmartArch group and 17 in the SENT group, aged 16.97 ± 4.05 years). The total LII decrease for the SmartArch and SENT groups was 5.63 mm and 5.29 mm, respectively, which was neither statistically nor clinically significant. Root resorption was not significantly different between the groups. The difference in pain levels was not statistically significant for the first 5 days following wire placement; however, there was a significant difference favoring the SENT group in the final 2 days. Conclusions: SmartArch and SENT archwires were similarly effective during the alignment phase of orthodontic treatment. Root resorption should be observed throughout the treatment with either wire. SmartArch wires demonstrated higher pain perception than SENT wires.