Abstract : Objective: This study aimed to clarify differences in the positions of cone-beam computed tomography (CBCT) landmarks according to different midsagittal planes (MSPs) in patients with skeletal Class III facial asymmetry. Methods: Pre-treatment CBCT data from 60 patients with skeletal Class III were used. The patients were classified into symmetric (menton deviations of < 2 mm) or asymmetric (menton deviations of > 4 mm) groups. Six MSPs were established based on previous studies, and three-dimensional analyses were performed for the planes in both the groups. The measurement outcomes were compared statistically. Results: A statistically significant interaction (p < 0.01) was observed between MSPs and facial asymmetry. No significant differences were observed among MSPs in the symmetric group. However, significant differences in linear measurements were identified among MSPs in the asymmetric group. Specifically, the upper facial MSP revealed both maxillary and mandibular transverse asymmetries. On the other hand, anterior nasal spine (ANS)-associated MSP could not identify maxillary asymmetry. Furthermore, the menton deviation was approximately 3 mm lower when estimated using the ANS-associated MSP than that using upper facial MSP. Conclusions: The choice of MSP can significantly affect treatment outcomes while diagnosing patients with asymmetry. Therefore, care should be taken when selecting MSP in clinical practice.
Abstract : Objective: This study aimed to evaluate the zygomaticotemporal suture (ZTS) maturation, analyze the age distribution patterns of ZTS maturation stages, and investigate the relationship between ZTS and cervical vertebral maturation (CVM). Methods: A total of 261 patients who underwent cone-beam computed tomography (112 males, mean age, 13.1 ± 3.3 years; 149 females, mean age, 13.7 ± 3.1 years) were examined to evaluate the ZTS stages. The ZTS stages were defined based on a modified method from previous studies on zygomaticomaxillary sutures. Differences between groups and correlations between indicators were analyzed using the Spearman correlation test, intraclass coefficient of correlation (ICC), one-way analysis of variance and rank sum test. Statistical significance was set at p < 0.05. The diagnostic value of CVM stages in identifying ZTS maturation stages was evaluated using positive likelihood ratios (LRs). Results: A positive relationship was found between the ZTS and CVM stage (r = 0.747, ICC = 0.621, p < 0.01) and between the ZTS stage and chronological age (r = 0.727, ICC = 0.330, p < 0.01). Positive LRs > 10 were found for several cervical stages (CSs), including CS1 and CS2 for the diagnosis of stage B, CS1 to CS3 for the diagnosis of stages B and C, and CS6 for the diagnosis of stages D and E. Conclusions: The ZTS maturation stage may be more relevant to the CVM stage than to the chronological age. The CVM stages can be good indicators for clinical decisions regarding maxillary protraction, except for CS4 and CS5.
Abstract : Objective: To evaluate the following null hypothesis: the skeletal and dentoalveolar expansion patterns in the coronal and axial planes are not different with two different types of microimplant-assisted rapid palatal expansion (MARPE) systems. Methods: Pretreatment (T0) and post-MARPE (T1) cone-beam computed tomography (CBCT) images of 32 patients (14 males and 18 females; mean age, 19.37) were analyzed. We compared two different MARPE systems. One MARPE system included the maxillary first premolars, maxillary first molars, and four microimplants as anchors (U46 type, n = 16), while the other included only the maxillary first molars and microimplants as anchors (U6 type, n = 16). Results: In the molar region of the U6 and U46 groups, the transverse expansion at the midnasal, basal, alveolar, and dental levels was 2.64, 3.52, 4.46, and 6.32 mm and 2.17, 2.56, 2.73, and 5.71 mm, respectively. A significant difference was observed in the posterior alveolar-level expansion (p = 0.036) and posterior basal-bone-level expansion (p = 0.043) between the groups, with greater posterior skeletal and alveolar expansion in the U6 group. Conclusions: Compared with the U46 group, the U6 group showed greater posterior expansion at the alveolar and basal-bone levels, with an almost parallel split. Both groups showed a pyramidal expansion pattern in the coronal view.
Abstract : Objective: The evidence on the accuracy of bite registration using intraoral scanners is sparse. This study aimed to develop a new method for evaluating bite registration accuracy using intraoral scanners. Methods: Two different types of models were used; 10 stone models and 10 with acrylic resin teeth. A triangular frame with cylindrical posts at each apex (one anterior and two posteriors) was digitally designed and manufactured using three-dimensional (3D) printing. Such a structure was fitted in the lingual space of each maxillary and mandibular model so that, in occlusion, the posts would contact their opposing counterparts, enforcing a small interocclusal gap between the two arches. This ensured no tooth interference and full contact between opposing posts. Bite registration accuracy was evaluated by measuring the distance between opposing posts, with small values indicating high-accuracy. Three intraoral scanners were used: Medit i500, Primescan, and Trios 4. Viewbox software was used to measure the distance between opposing posts and compute roll and pitch. Results: The average maximum error in interocclusal registration exceeded 50 μm. Roll and pitch orientation errors ranged above 0.1 degrees, implying an additional interocclusal error of around 40 μm or more. The models with acrylic teeth exhibited higher errors. Conclusions: A method that avoids the need for reference hardware and the imprecision of locating reference points on tooth surfaces, and offers simplicity in the assessment of bite registration with an intraoral scanner, was developed. These results suggest that intraoral scanners may exhibit clinically significant errors in reproducing the interocclusal relationships.
Marcio Antonio de Figueiredo, Fábio Lourenço Romano, Murilo Fernando Neuppmann Feres, Maria Bernadete Sasso Stuani, José Tarcísio Lima Ferreira, Ana Carla Raphaelli Nahás, Mírian Aiko Nakane Matsumoto
Abstract : Objective: To investigate the effects of maxillary orthodontic expansion on the alveolar bone tissue in adult patients treated with aligners by using cone-beam computed tomography. Methods: Thirty patients (22 females and 8 males; mean age: 36.3 years) were treated with Invisalign® aligners. Cone-beam computed tomography and digital models were obtained before (T0) and after (T1) upper arch expansion. The bone thicknesses in the cervical, middle, and apical areas of the incisors, canines, premolar, and first molars were buccally and palatally measured, totaling 96 areas and 2,880 measurements. The buccolingual inclinations and transverse measurements of the teeth were obtained from digital models to correlate them with the bone changes. The statistical tests used were Student’s t-test, analysis of variance, and Pearson’s correlation tests (p < 0.05). Results: From the 96 areas evaluated, 84 revealed an increase or stability in the alveolar bone thickness and twelve displayed significant bone loss. Bone changes did not correlate with the tooth inclination and transverse measurements. Conclusions: Within the limitation of the present study, mild levels of upper arch expansion obtained with Invisalign® aligners in adult patients did not result in any clinically significant loss of alveolar bone thickness.
Abstract : Objective: The aim of this retrospective study was to compare changes in hard tissue and soft tissue after the four first premolars were extracted with anterior teeth retraction according to the presence or absence of lip incompetence. Methods: Patients who underwent the four first premolars were extracted with anterior teeth retraction were divided into competent (n = 20) and incompetent lip (n = 20) groups. Cephalometric measurements for hard tissue and soft tissue changes were performed pre-treatment and post-treatment. Results: In the competent group, the upper and lower lips retreated by 2.88 mm and 4.28 mm, respectively, and in the incompetent group by 4.13 mm and 5.57 mm, respectively; the differences between the two groups were significant (p < 0.05). A strong positive correlation between retraction of the upper lip and upper incisors was observed in both groups (p < 0.05), whereas a correlation between retraction of the lower lip and lower incisors was only found in the incompetent group. A simple linear regression analysis showed that the pattern of lip retraction following the retraction of the anterior teeth was more predictable in the incompetent group than in the competent group. Conclusions: These findings suggest that the initial evaluation of lip incompetence in patients with skeletal Class II is essential for the accurate prediction of the soft tissue changes following retraction of the anterior teeth in premolar extraction treatment. Therefore, sufficient explanation should be provided during patient consultations.