pISSN 2234-7518
eISSN 2005-372X

Results obtained by Auto-WEKA for the 3 settings studied

Setting Time limit Algorithm Accuracy Sensitivity FP-rate Precision F-score MCC ROC AUC PR AUC Kappa
Setting 1 (clinical and Rx data) 5 minutes Bagging 80.3738 0.804 0.25 0.802 0.8 0.575 0.861 0.859 0.57
15 minutes Random Commitee 86.4486 0.864 0.174 0.864 0.863 0.709 0.903 0.896 0.706
30 minutes Multilayer Perceptron 80.3738 0.804 0.34 0.802 0.802 0.577 0.864 0.863 0.575
60 minutes Multilayer Perceptron 80.3738 0.804 0.34 0.802 0.802 0.577 0.864 0.863 0.575
Overnight Multilayer Perceptron 93.9252 0.939 0.08 0.94 0.939 0.87 0.915 0.913 0.869
Setting 2 (only clinical data) 5 minutes LMT 87.3832 0.874 0.173 0.876 0.871 0.73 0.908 0.918 0.723
15 minutes REP Tree 81.7757 0.818 0.222 0.816 0.816 0.608 0.822 0.79 0.606
30 minutes REP Tree 81.7757 0.818 0.222 0.816 0.816 0.608 0.822 0.79 0.606
60 minutes J48 79.9065 0.799 0.262 0.798 0.794 0.564 0.786 0.754 0.557
Overnight Random Tree 84.1121 0.841 0.222 0.845 0.836 0.659 0.898 0.891 0.647
Setting 3 (only Rx data) 5 minutes SMO 71.9626 0.72 0.378 0.715 0.705 0.379 0.735 0.751 0.364
15 minutes Multilayer Perceptron 70.5607 0.706 0.392 0.699 0.706 0.691 0.346 0.737 0.755
30 minutes SMO 70.0935 0.701 0.39 0.693 0.689 0.338 0.741 0.756 0.329
60 minutes AdaBoost 70.5607 0.706 0.368 0.699 0.698 0.355 0.717 0.699 0.351
Overnight Bagging 70.5607 0.706 0.406 0.701 0.686 0.343 0.741 0.734 0.324

Accuracy = (TP + TN)/(TP + TN + FP + FN); Sensitivity = TP/(TP + FN); FP-rate = FP/(FP + TP); Precision = TP/(TP + FP);

Fscoreβ=(1+β2)×precision×Sensitivityβ2+precision+Sensitivity; MCC = TP×TNFP×FNTP+FPTP+FNTN+FPTN FN

Kappa is the measure of how closely the instances were correctly classified by the algorithm, comparing it’s accuracy with that of a random classifier.

TP, true positive; TN, true negative; FP, false positive; FN, false negative; MCC, Matthews correlation coefficient; AUC-ROC, area under the receiver operating characteristic curve; AUC-PR, area under the Precision-Recall (sensitivity) curve; Rx, radiographic; LMT, logistic model tree; REP, reduced error pruning; SMO, sequential minimal optimization.

Korean J Orthod 2022;52:102~111 https://doi.org/10.4041/kjod.2022.52.2.102
© Korean J Orthod
© The Korean Association of Orthodontists. / Powered by INFOrang Co., Ltd